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Abstract

The possibility of speech processing in the absence of an intelligible acoustic signal has given rise to the idea of a ‘silent speech’ inter-

face, to be used as an aid for the speech-handicapped, or as part of a communications system operating in silence-required or high-back-
ground-noise environments. The article first outlines the emergence of the silent speech interface from the fields of speech production,
automatic speech processing, speech pathology research, and telecommunications privacy issues, and then follows with a presentation of
demonstrator systems based on seven different types of technologies. A concluding section underlining some of the common challenges
faced by silent speech interface researchers, and ideas for possible future directions, is also provided.
� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

A silent speech interface (SSI) is a system enabling
speech communication to take place when an audible
acoustic signal is unavailable. By acquiring sensor data
from elements of the human speech production process –
from the articulators, their neural pathways, or the brain
itself – an SSI produces a digital representation of speech
which can be synthesized directly, interpreted as data, or
routed into a communications network.

SSIs are still in the experimental stage, but a number of
potential applications seem evident. Persons who have
undergone a laryngectomy, or older citizens for whom
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speaking requires a substantial effort, would be able to
mouth words rather than actually pronouncing them.
Alternatively, those unable to move their articulators due
to paralysis could produce speech or issue commands sim-
ply by concentrating on the words to be spoken. And
because SSIs build upon the existing human speech
production process, augmented with digital sensors and
processing, they have the potential to be more natural-
sounding, spontaneous, and intuitive to use than such cur-
rently available speech pathology solutions as the
electrolarynx, tracheo-oesophageal speech (TES), and
cursor-based text-to-speech systems.

While improving aids for the speech-handicapped has
been an objective of biomedical engineering for many
years, the recent increase of interest in SSI technology
arises also from a second, quite different class of applica-
tions: providing privacy for cellular telephone conversa-
tions. It is widely agreed that cellphones can be an
annoyance in meetings or quiet areas, and in many public
places today their use is banned. Quite often the cellphone
user, too, is uncomfortable having the content of his or her
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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conversation become public. At the same time, the ability
to field an urgent or important call at any location could
in many instances be a very useful service. An SSI, if
non-invasive and small enough to be incorporated into a
telephone handset, would resolve these issues by allowing
users to communicate silently, without disturbing those
around them. Given the numbers of cellphones in use
today, the market for SSIs could potentially become very
important if such a concept gained public acceptance.

Somewhat paradoxically, silent speech interfaces also
hold promise for speech processing in noisy environments.
This is due to two principal observations:

1. Being based on non-acoustically acquired speech cues,
SSIs are largely insensitive to ambient background
noise;

2. In a noisy environment, vocalization is no longer
restricted. Although an audible (i.e., intelligible) speech
signal is not produced, the associated glottal activity cre-
ates signals which can be exploited via appropriate sen-
sors incorporated into an SSI.

Speech communication in noisy environments is thus the
third major application area of the silent speech interface.

To date, experimental SSI systems based on seven differ-
ent types of technology have been described in the
literature:

1. Capture of the movement of fixed points on the articu-
lators using Electromagnetic Articulography (EMA)
sensors (Fagan et al., 2008);

2. Real-time characterization of the vocal tract using ultra-
sound (US) and optical imaging of the tongue and lips
(Denby and Stone, 2004; Denby et al., 2006; Hueber
et al., 2007a,b,c, 2008a,b, this issue);

3. Digital transformation of signals from a Non-Audible
Murmur (NAM) microphone (a type of stethoscopic
microphone) (Nakajima et al., 2003a,b, 2006; Nakajima,
2005; Heracleous et al., 2007; Otani et al., 2008; Hiraha-
ra et al., this issue; Tran et al., 2008a,b, this issue);

4. Analysis of glottal activity using electromagnetic (Titze
et al., 2000; Ng et al., 2000; Tardelli, 2003; Preuss
et al., 2006; Quatieri et al., 2006), or vibration (Bos
and Tack, 2005; Patil and Hansen, this issue) sensors;

5. Surface electromyography (sEMG) of the articulator
muscles or the larynx (Jorgensen et al., 2003; Maier-
Hein et al., 2005; Jou et al., 2006; Hasegawa-Johnson,
2008; Jorgensen and Dusan, this issue; Schultz and
Wand, this issue);

6. Interpretation of signals from electro-encephalographic
(EEG) sensors (Porbadnigk et al., 2009);

7. Interpretation of signals from implants in the speech-
motor cortex (Brumberg et al., this issue).

The primary goal of this article is to provide a detailed, but
concise introduction to each of these approaches. These
summaries appear in Section 3. Our article would not be
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
complete, however, without also outlining the historical
context in which the SSI concept has evolved, starting from
its roots in speech production research and biomedical
engineering. That is the focus of Section 2, below. In the
concluding section of the article, we first compare the dif-
ferent SSI technologies head-to-head, pointing out for each
one its range of application, key advantages, potential
drawbacks, and current state of development, and finally
attempt to draw some general conclusions from the work
carried out by the different groups, proposing possible ave-
nues for future development in this exciting new interdisci-
plinary field.

2. Historical framework

Humans are capable of producing and understanding
whispered speech in quiet environments at remarkably
low signal levels. Most people can also understand a few
unspoken words by lip-reading, and many non-hearing
individuals are quite proficient at this skill. The idea of
interpreting silent speech electronically or with a computer
has been around for a long time, and was popularized in
the 1968 Stanley Kubrick science-fiction film ‘‘2001 – A
Space Odyssey”, where a ‘‘HAL 9000” computer was able
to lip-read the conversations of astronauts who were plot-
ting its destruction. Automatic visual lip-reading was ini-
tially proposed as an enhancement to speech recognition
in noisy environments (Petajan, 1984), and patents for
lip-reading equipment supposedly able to understand sim-
ple spoken commands began to be registered in the mid
1980’s (Nakamura, 1988). What was perhaps the first
‘‘true” SSI system, although with very limited performance,
originated in Japan. In 1985, scientists used signals from 3
electromyographic sensors mounted on the speaker’s face
to recognize 5 Japanese vowels with 71% accuracy, and
output them to a loudspeaker in real-time (Sugie and Tsu-
noda, 1985). A few years later, an imaging-based system, in
which lip and tongue features were extracted from video of
the speaker’s face, returned 91% recognition on a similar
problem (Hasegawa and Ohtani, 1992).

While the possibility of robustness of silent speech
devices to ambient noise was already appreciated in some
of the earliest articles, the idea of also recovering glottal
excitation cues from voiced speech in noisy environments
was a somewhat later development. A major focal point
was the DARPA Advanced Speech Encoding Program
(ASE) of the early 2000’s, which funded research on low
bit rate speech synthesis ‘‘with acceptable intelligibility,
quality, and aural speaker recognizability in acoustically
harsh environments”, thus spurring developments in
speech processing using a variety of mechanical and elec-
tromagnetic glottal activity sensors (Ng et al., 2000; Tard-
elli, 2003; Preuss et al., 2006; Quatieri et al., 2006).

It was not until the advent of cellular telephones, how-
ever, that SSIs in their current incarnation began to be dis-
cussed. Major deployment of GSM cellular telephone
networks began around 1994. By 2004, there were more
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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cellphones worldwide than fixed line phones, and the inter-
vening years provided more than ample time for the issue
of cellphone privacy to manifest itself. In Japan in 2002,
an NTT DoCoMo press release announced a prototype
silent cellphone using EMG and optical capture of lip
movement (Fitzpatrick, 2002). ‘‘The spur to developing
such a phone,” the company said, ‘‘was ridding public
places of noise,” adding that, ‘‘the technology is also
expected to help people who have permanently lost their
voice.” The first SSI research papers explicitly mentioning
cellphone privacy as a goal also began to appear around
this time (Nakajima et al., 2003a; Denby and Stone, 2004).

The possibility of going further today than in some of
the earlier SSI designs is due in large part to advances in
instrumentation made by the speech production research
community. Many of the sensing technologies proposed
for use in SSIs have been developed over numerous years
for extracting detailed, real-time information about the
human speech production process. There is thus today a
wealth of resources available for applying ultrasound
(Stone et al., 1983; Stone and Shawker, 1986; Stone and
Davis, 1995; Wrench and Scobbie, 2003; Stone, 2005;
Davidson, 2005; Epstein, 2005; Wrench et al., 2007),
X-ray cineradiography (Arnal et al., 2000; Munhall et al.,
1995), fMRI (Gracco et al., 2005; NessAiver et al., 2006),
EMA (Perkell et al., 1992; Hoole and Nguyen, 1999),
EMG (Tatham, 1971; Sugie and Tsunoda, 1985), and
EPG (Gibbon, 2005) to speech-related research problems.
Speech scientists interested in going back to the brain itself
to find exploitable SSI signals are able to profit from
research experience on EEG and other BCI techniques
(Epstein, 1983; Wolpaw et al., 2002; IEEE, 2008; Sajda
et al., 2008) as well.

The use of vocal tract imagery and other sensor infor-
mation to help build speech synthesis systems, furthermore,
is by no means a by-product of recent research on SSIs. It
has been standard practice for many years in the fields of
articulatory speech synthesis and multimodal speech pro-
cessing, where, once again, the accent is on understanding
speech production (Maeda, 1990; Rubin and Vatikiotis-
Bateson, 1998; Schroeter et al., 2000; House and Gran-
ström, 2002). The goal of SSI research is less to further
the understanding of the underlying speech production
processes – though this is not ruled out should a break-
through nonetheless occur – than to apply some of what
has already been learned to perform new, useful functions,
in particular: (1) providing speech of ‘‘acceptable intelligi-
bility, quality, and aural speaker recognizability”, as DAR-
PA expressed it, to the speech-handicapped; and (2)
enabling speech processing in situations where an acoustic
signal is either absent or is masked by background noise.

Finally, investigators in phonetics and speech patholo-
gies, along with medical researchers and practitioners
responsible for much of what is known about these handi-
caps today, and experts in biomedical engineering, have
also laid much of the groundwork necessary for the devel-
opment of successful SSI applications (Blom and Singer,
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
1979; Baken et al., 1984; Marchal and Hardcastle, 1993;
Drummond et al., 1996; Nguyen et al., 1996; Crevier-Buch-
man, 2002).

3. Silent speech interface technologies

Each of the following subsections describes a different
technology which has been used to build an experimental
SSI system reported in the literature. The order of presen-
tation has been chosen to start with the ‘‘physical” tech-
niques which characterize the vocal tract by measuring its
configuration directly or by sounding it acoustically, before
passing to an ‘‘electrical” domain, where articulation may
be inferred from actuator muscle signals, or predicted using
command signals obtained directly from the brain. An ad
hoc comparison of the different methods, giving their range
of application, advantages, drawbacks, and state of devel-
opment, appears in Section 4.

3.1. Capture of the movement of fixed points on the

articulators using Electromagnetic Articulography (EMA)

sensors

As the shaping of the vocal tract is a vital part of speech
production, a direct and attractive approach to creating a
silent speech interfacing would be to monitor the move-
ment of a set of fixed points within the vocal tract. Numer-
ous authors have considered methods of tracking this
motion using implanted coils which are electrically con-
nected to external equipment and are electromagnetically
coupled to external excitation coils (Carstens, 2008;
Schönle et al., 1987; Hummel et al., 2006). These standard
EMA systems aim to track the precise Cartesian coordi-
nates, in two or three dimensions, of the implanted coils.

While it would be attractive to attempt to measure the
Cartesian position of defined points in an SSI application,
it is non-trivial to actually achieve in a convenient manner.
However, given that a nonlinear mapping already exists
between the vocal tract shape and the resulting sounds, it
appears worthwhile to consider a simpler monitoring sys-
tem based not on Cartesian positions, but on some other,
nonlinear, mapping. In (Fagan et al., 2008), a system was
investigated which consists of permanent magnets attached
at a set of points in the vocal apparatus, coupled with mag-
netic sensors positioned around the user’s head. The use of
permanent magnets has the advantage that there is no
necessity for an electrical connection to the implants, and
so there is greater flexibility in terms of placement and
use. In the test system developed, magnets were glued to
the user’s tongue, lips and teeth, and a set of six, dual axis
magnetic sensors mounted on a pair of spectacles, as shown
in Fig. 1.

The aim of the experimental study was to establish
whether it is possible to extract sufficient information from
a set of sensors of this type to allow basic speech recogni-
tion. To this end, a simple recognition algorithm was
adopted, based on an adaptation of the widely used
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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Fig. 1. Placement of magnets and magnetic sensors for an EMA based
SSI.
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Dynamic Time Warping (DTW) algorithm, using Dynamic
Programming (DP) (Holmes and Holmes, 2001; Furui,
2001). In order to evaluate the behavior of the system,
the subject was asked to repeat a set of 9 words and 13 pho-
nemes (taken from the ARPAbet (Levinson, 2005)) to pro-
vide training data. Ten repetitions of each word/phone
were compared to the training set template. It was found
that under laboratory conditions, with these very limited
vocabularies, it was possible to achieve recognition rates
of over 90%. It was noted that while the discrimination
between, for instance, the labial phonemes (b–m–p–f) and
between the velar phonemes (g–k) was less significant than
for more distinct phonemes, the processing was still able to
correctly identify the best fit. This was also found to be the
case for voiced and unvoiced versions of the same phoneme
(e.g. g–k and b–p). On the basis of these preliminary results
it is believed that with further development of the sensing
and processing systems it may be possible to achieve
acceptable recognition for larger vocabularies in non-labo-
ratory conditions.
Fig. 2. Ultrasound-based SSI (schematic).
3.2. Real-time characterization of the vocal tract using

ultrasound (US) and optical imaging of the tongue and lips

Another way to obtain direct information on the vocal
tract configuration is via imaging techniques. Ultrasound
imagery is a non-invasive and clinically safe procedure
which makes possible the real-time visualization of one of
the most important articulators of the speech production
system – the tongue. Placed beneath the chin, an ultra-
sound transducer can provide a partial view of the tongue
surface in the mid-sagittal plane. In the SSI developed in
the Ouisper project (Ouisper, 2006), an ultrasound imaging
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
system is coupled with a standard video camera placed in
front of the speaker’s lips. Non-acoustic features, derived
exclusively from visual observations of these two articula-
tors, are used to drive a speech synthesizer, called in this
case a ‘‘silent vocoder”, as illustrated in Fig. 2.

Since neither glottal excitation nor airflow in the vocal
tract is required, an ultrasound-based SSI is suitable for
use by patients who have undergone a laryngectomy.
And since laptop-based high performance ultrasound med-
ical imaging systems are already available today, a wear-
able, real-time SSI, with an embedded ultrasound
transducer and camera, appears to be quite realistic.

A number of solutions have been proposed and
described in the literature to build a ‘‘silent vocoder” able
to recover an acoustic speech signal from visual informa-
tion only. In the first such attempt to achieve this ‘‘visuo-
acoustic” mapping task, tongue contours and lip profiles
extracted from a 2 min ultrasound dataset were mapped
either onto GSM codec parameters (Denby and Stone,
2004) or line spectral frequencies (Denby et al., 2006) using
multilayer perceptrons. In (Hueber et al., 2007a), extrac-
tion and parameterization of the tongue contour was
replaced by a more global coding technique called the
EigenTongues decomposition. By projecting each ultra-
sound image into a representative space of ‘‘standard vocal
tract configurations”, this technique encodes the maximum
amount of information in the images – predominantly ton-
gue position, but also other structures, such as the hyoid
bone and short tendon, as well as muscle and fat below
the tongue. All these approaches, however, predict only
spectral features, and thus permit only LPC-based speech
synthesis, without any prescription for finding an appropri-
ate excitation signal. One solution to this problem would
be to make use of pre-recorded acoustic speech segments,
as is done in state-of-the-art corpus-based speech synthesis
systems. In that perspective, a new framework, combining
a ‘‘visuo-phonetic decoding stage” and a subsequent con-
catenative synthesis procedure, was introduced in (Hueber
et al., 2007b, 2008a, this issue).

The approach investigated is based on the construction
of a large audio-visual unit dictionary which associates a
visual realization with an acoustic one for each diphone.
In the training stage, visual feature sequences are modeled
for each phonetic class by a context-independent continu-
ous Hidden Markov Model (HMM). In the test stage,
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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the visuo-phonetic decoder ‘‘recognizes” a set of phonetic
targets in the given sequence of visual features (Hueber
et al., 2007c, this issue). Evaluated on a one-hour continu-
ous speech database, consisting of two speakers (one male,
one female, native speakers of American English), this
visuo-phonetic decoder is currently able to correctly predict
about 60% of phonetic target sequences, using video-only
speech data. At synthesis time, given a phonetic prediction,
a unit selection algorithm searches in the dictionary for the
sequence of diphones that best matches the input test data,
and a ‘‘reasonable” target prosodic pattern is also chosen.
The speech waveform is then generated by concatenating
the acoustic segments for all selected diphones, and pro-
sodic transformations of the resulting speech signal are car-
ried out using ‘‘Harmonic plus Noise Model” (HNM)
synthesis techniques. An overview of the segmental
approach to silent vocoding is given in Fig. 3.

With this configuration, synthesis quality depends
strongly on the performance of the visual phone recog-
nizer, and with about 60% of phones correctly identified,
the system is not able to systematically provide an intelligi-
ble synthesis. Nevertheless, in those cases where the pho-
netic prediction is more nearly correct (above 90%),
initial intelligibility tests have shown that the system is able
to synthesize an intelligible speech signal with acceptable
prosody. Thus, improvement of the visuo-phonetic decod-
ing stage remains a critical issue, and several solutions are
envisioned. First, larger audio-visual speech databases are
currently being recorded using a new acquisition system
(Hueber et al., 2008b), which is able to record both video
streams (US and camera), along with the acoustic signal,
at more than 60 frames per second, as compared to
Fig. 3. Overview of the segmental approach for a s
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30 fps for the earlier baseline acquisition system. Because
of the better temporal resolution, the observation, and
therefore the modeling, of very short phones, such as /t/
or /d/, should now be more accurate. Also, in order to take
into account the asynchrony between tongue and lip
motions during speech, the use of multistream HMMs
and the introduction of context-dependency are being
tested. Finally, we remark that this approach to an ultra-
sound-based SSI has been evaluated on a difficult recogni-
tion task – the decoding of continuous speech without any
vocabulary restrictions. Clearly, better performance could
also be obtained either on a more limited vocabulary recog-
nition task (less than 250 words, for instance), or on an iso-
lated word ‘‘silent recognition” task, giving an ultrasound
based SSI that could be used in more restricted, but never-
theless realistic situations.
3.3. Digital transformation of signals from a Non-Audible

Murmur (NAM) microphone

Non-Audible Murmur (NAM) is the term given to the low
amplitude sounds generated by laryngeal airflow noise and
its resonance in the vocal tract (Nakajima et al., 2003b; Otani
et al., 2008). NAM sound radiated from the mouth can
barely be perceived by nearby listeners, but a signal is easily
detected using a high-sensitivity contact microphone
attached on the skin over the soft tissue in the orofacial
region. The NAM microphone is designed for selective
detection of tissue vibration during speech while being insen-
sitive to environmental noise. It is thus expected to be a con-
venient input device for private telecommunications,
ilent vocoder driven by video-only speech data.

peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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noise-robust speech recognition, and communication
enhancement for the vocally handicapped.

The idea of applying NAM for telecommunication pur-
poses was first proposed by Nakajima et al. (2003a,b), who
discovered that NAM can be sensed by the ear alone using
a stethoscope placed beneath the chin while whispering. A
small stethoscope equipped with a microphone thus
appeared to be a simple sensor for use in many situations
where speaking aloud is not desirable. This early stetho-
scopic type of NAM microphone however displayed a
problem of sound quality due to a sharply limited fre-
quency range, up to only 2 kHz, which is certainly too nar-
row for speech transmission. Also, the structure of a
stethoscope is very susceptible to noise due to friction
against skin or clothing. Many improvements were made
to resolve these problems via improved impedance match-
ing between the microphone diaphragm and the skin. As
shown in Fig. 4, the solution adopted was to encapsulate
an entire microphone unit in a small enclosure filled with
a soft silicone material, so that skin vibrations transmit
to the microphone diaphragm via the layer of soft silicone
without being affected by acoustic noise or external vibra-
tion. To reduce the size of the device, a miniature electret
condenser microphone was used as the sensor unit, with
its metal cover removed to expose the diaphragm and allow
direct contact with the soft silicone (Nakajima, 2005). The
best location for placing the NAM microphone was empir-
ically determined to be on the skin below the mastoid pro-
cess on a large neck muscle.

Even with these improvements, problems remain con-
cerning the transmission characteristics. The frequency
response of the silicone type NAM microphone exhibits a
peak at 500–800 Hz, and a bandwidth of about 3 kHz. Tis-
sue vibration at consonant bursts is conspicuous in ampli-
tude in the detected signals. Spectral distortion of speech is
small, but nonetheless present, due to the principle of signal
detection, which differs from the natural acoustic propaga-
tion of speech sounds. Despite these problems, however,
Fig. 4. NAM microphone and its placement. (a) Typical silicone-type NAM
embedded in a capsule filled with a soft silicone material. (b) Setup of NAM mi
of the neck to capture tissue-conducted vibration of vocal-tract resonance gen

Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
NAM microphones with various types of construction
have been applied as alternative speech input devices in a
number of scenarios.

The NAM microphone has been applied to developing
new systems for silent-speech telephony and recognition.
For the purposes of telecommunications where privacy is
required or in a high-noise environment, the microphone
with an amplifier can be combined with a cellular phone
headset to enable talking and listening. Simple amplifica-
tion of NAM speech already produces an acceptable signal,
and speech quality transformation techniques have been
applied in order to produce more natural-sounding speech.
These successes have motivated speech engineers toward
using ‘‘NAM recognition” as one of the acceptable solu-
tions for robust speech recognition in noisy environments
(Nakajima et al., 2006; Heracleous et al., 2007; Tran
et al., 2008a,b, this issue).

The NAM device is also useful for speakers with voice
pathologies due to laryngeal disorders, who have difficulty
producing voiced sounds that require vocal-fold vibration.
Simple amplification of NAM speech is beneficial for the
purposes of conversation, for lecturing, and for telephone
calls. A more challenging task is the application of NAM
as a talking aid for alaryngeal speakers. Removal of the
larynx, with separation of the vocal tract from the upper
airway, is clearly an unfavorable condition for the use of
a NAM microphone because airflow from the lungs cannot
produce the necessary vocal-tract resonance. In this case,
an alternative sound source must be introduced externally
to the vocal tract. Hirahara et al. (this issue) employed a
small vibration transducer attached on the neck surface
to elicit vocal-tract resonance for this purpose, and also
investigated speech transformation techniques to produce
more natural-sounding NAM-based speech synthesis. Ade-
quately estimating voiced segments for speech synthesis is
of course a problem common to all vocal-tract sensing
approaches to the SSI problem. We will return to this point
in Section 4.1.
microphone using a miniature electret condenser microphone unit that is
crophone for silent mobile telephony. The microphone is placed on the side
erated by airflow noise in the constricted laryngeal airway.

peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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3.4. Analysis of glottal activity using electromagnetic or

vibration sensors

In the early 2000’s, the United States Defense Depart-
ment launched the DARPA Advanced Speech Encoding
Program (ASE), which provided funding to develop non-
acoustic sensors for low bit rate speech encoding in chal-
lenging acoustic environments, such as the interiors of
fighting vehicles and aircraft, urban military terrains, etc.
A number of projects were funded in Phase I of the pro-
gram, usually to evaluate the efficacy of specific sensors
used in conjunction with a standard close-talk microphone,
and a special data base entitled ‘‘DARPA Advanced
Speech Encoding Pilot Speech Corpus” was developed in
order to benchmark the different proposed solutions (Tard-
elli, 2003). A program with similar goals was undertaken
by Defense Research and Development Canada (Bos and
Tack, 2005), and in Europe, the EU project SAFIR
(Speech Automatic Friendly Interface Research, IST-
2002-507427) (Dekens et al., 2008) contained work pack-
ages for developing a speech database with six types of hos-
tile acoustic environments in order to evaluate non-
acoustic sensors.

The basic principle in these studies is to obtain glottal
waveforms which can be used for de-noising by correlation
with the acoustic signal obtained from a standard close-
talk microphone. The necessary waveforms may be
obtained either via detectors which are directly sensitive
to vibrations transmitted through tissue – throat micro-
phones and the like – or from the interaction of glottal
movement with an imposed electromagnetic field. In addi-
tion to the glottal closure information, spectrograms of the
sensor signals in most cases exhibit vocal tract resonances
as well, albeit in a modified form because of the way in
which the information is captured. For vibration sensors,
for example, the observed spectrum is modified by the
acoustic transfer function of the path between the sound
source and the capture device. The ‘‘non-acoustic” label
is in fact a bit of a misnomer for such sensors; it refers to
the fact that the captured acoustic signal, as was the case
with NAM, propagates through tissue or bone, rather than
through air.

Speech enhancement using such vibration or electro-
magnetic sensors has been shown to work very well, with
gains of up to 20 dB reported (Titze et al., 2000; Dupont
and Ris, 2004; Quatieri et al., 2006). In (Ng et al., 2000),
perfectly intelligible speech was obtained using a GEMS
device (described below) from a signal with an initial sig-
nal to noise ratio of only 3 dB, while excellent results on
noise robust vocoding in three harsh military noise envi-
ronments using GEMS and PMIC (description below)
are reported in (Preuss et al., 2006). Some of the devices
studied in ASE and elsewhere are described in more
detail in what follows. The related area of speech
enhancement in noise using audio-visual cues has been
well covered elsewhere, and will not be addressed in this
article.
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
3.4.1. Vibration sensors

Throat Microphone. Throat microphones have been
used by fighter pilots for decades. Based on the same tech-
nologies as standard microphones, these are usually double
units attached to a neckband, with one bud worn on each
side of the Adam’s apple. The buds are simply pressed
against the skin, without any special coupling, in order to
capture that part of the speech signal which is transmitted
through the flesh of the throat. Throat microphones are
designed to have low response in the outward direction,
so as to remain insensitive to background noise.

Bone microphone. Bone microphones are designed to
pick up the speech signal which propagate through the
bones of the skull, and as such are also resistant to contam-
ination from ambient background noise. The best capture
points are on the cheekbone, forehead or crown of the
head. Bone microphones are sometimes incorporated
directly into soldier’s helmets for battlefield applications
(see, for example, Bos and Tack, 2005).

Physiological microphone, or PMIC. The PMIC (Bos
and Tack, 2005; Quatieri et al., 2006; Preuss et al., 2006;
Patil and Hansen, this issue), is a more sophisticated form
of the throat microphone. It is worn as a neckband, con-
sisting of a piezoelectric sensor immersed in a gel bath
inside a closed bladder, which is designed to have a stron-
ger acoustic coupling to tissue than to air, thus assuring
robustness to background noise. The PMIC, in addition
to speech detection, is also intended to relay information
on the wearer’s heart and respiration rates, etc., whence
its name, ‘‘physiological”. A recent research article using
the PMIC for speaker assessment appears in (Patil and
Hansen, this issue).

In-ear microphone. In this device, noise-immunity is
assure by inserting a small microphone into the ear canal
(Bos and Tack, 2005; Dekens et al., 2008), which is closed
off by an earphone for incoming signals. The signal to noise
ratio is very good, and even whispered speech can be
detected. A disadvantage of the technique is that poten-
tially important exterior sounds can no longer be detected
by the instrumented ear.

3.4.2. Electromagnetic sensors

EGG. The electroglottograph (Rothenberg, 1992; Titze
et al., 2000; Quatieri et al., 2006), is a standard research
tool designed to detect changes in electrical impedance
across the throat during voiced speech. It consists of 2
gold-plated electrodes held in place on either side of the lar-
ynx by means of a collar, with an applied potential. When
the vocal folds are closed, the electric impedance decreases,
while when they are open, a larger value ensues. Glottal
vibration in this way induces a signal of some 1 V RMS
on a 2–3 MHz carrier, which is quite readily detectable.
A drawback of the technique is its sensitivity to the exact
positioning of the electrodes.

GEMS. The General Electromagnetic Motion System is
based on a relatively recent miniature micropower
(<1 mW) radar technology (Burnett et al., 1997; Titze
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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et al., 2000), which can effectuate very high resolution
reflectrometry using brief EM pulses in the 2.4 GHz ISM
band. The GEMS antenna may be attached to the throat
at the laryngeal notch, or in other positions. Articulator
motion, particularly that of the glottis, can be accurately
detected from the Doppler frequency shifting of the
reflected electromagnetic energy that such movement
engenders. Vibrations from 20 Hz to 8 kHz are detectable.
As with the EGG, antenna positioning is a crucial factor
for GEMS.

TERC. The Tuned Electromagnetic Resonating Collar
(Brown et al., 2004, 2005; TERC, 2009) measures changes
in the intrinsic electrical capacitance of the glottis. The
device exploits the fact that when the glottis opens, the per-
mittivity of a cross section of the neck through the larynx
decreases. The device consists of a neckband composed
of copper electrodes on an acrylic substrate, tuned to a
sharp resonance at a particular frequency of several tens
of MHz. The high-Q of the resonant circuit causes small
movements of the glottis to lead to large deviations
(�30 dB) from resonance, hence producing a readily
detectable glottal vibration signal.

The goal of the ASE and other programs was to use
non-acoustic sensors to enhance speech produced in acous-
tically challenging environments, for subsequent retrans-
mission at low bit rates over limited-resource channels.
As such, these projects share the SSI goal of enabling
speech processing in noisy environments. Indeed, some of
the sensors discussed exploit principles already evoked in
our earlier discussion of the NAM microphone. These mil-
itary/security applications, however, lack some of the ‘‘low
acoustic profile” quality which is central to the SSI con-
cept. Interestingly, when Phase 2 of ASE was launched in
2005 (only one bidder, BBN Corporation, was retained in
Phase 2), a new, supplementary goal had appeared: to
‘‘explore and characterize the nature of sub-auditory
(non-acoustic) speech and its potential utility as an alterna-
tive means of communication in acoustically harsh envi-
ronments”. To the authors’ knowledge, results on sub-
auditory processing in ASE have yet to be published.

3.5. Surface electromyography (sEMG) based speech

recognition

Surface ElectroMyoGraphy (sEMG) is the process of
recording electrical muscle activity captured by surface
(i.e., non-implanted) electrodes. When a muscle fiber is
activated by the central nervous system, small electrical
currents in the form of ion flows are generated. These elec-
trical currents move through the body tissue, whose resis-
tance creates potential differences which can be measured
between different regions on the body surface, for example
on the skin. Amplified electrical signals obtained from mea-
suring these voltages over time can be fed into electronic
devices for further processing.

As speech is produced by the activity of human articula-
tory muscles, the resulting myoelectric signal patterns mea-
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sured at these muscles provides a means of recovering the
speech corresponding to it. Since sEMG relies on muscle
activity alone, speech can be recognized even if produced
silently, i.e., without any vocal effort, and the signal fur-
thermore cannot be corrupted or masked by ambient noise
transmitted through air. As a result, sEMG-based speech
recognition overcomes the major shortcomings of
traditional speech recognition, namely preserving privacy
of (silently) spoken conversations in public places, avoiding
the disturbance of bystanders, and ensuring robust
speech signal transmission in adverse environmental
conditions.

The use of EMG for speech recognition dates back to
the mid 1980’s, when Sugie and Tsunoda in Japan, and
Morse and colleagues in the United States published
(almost simultaneously) their first studies. As mentioned
in Section 2, Sugie and Tsunoda (1985) used three surface
electrodes to discriminate Japanese vowels, and demon-
strated a pilot system which performed this task in real-
time. Morse and O’Brien (1986) examined speech informa-
tion from neck and head muscle activity to discriminate
two spoken words, and in the following years, extended
their approach to the recognition of ten words spoken in
isolation (Morse et al., 1989, 1991). Although initial results
were promising, with accuracy rates of 70% on a ten word
vocabulary, performance decreased dramatically for
slightly larger vocabularies, achieving only 35% for 17
words, and thus did not compare favorably with conven-
tional speech recognition standards. More competitive per-
formance was first reported by Chan et al. (2001), who
achieved an average word accuracy of 93% on a vocabulary
of the English digits. Chan was also the first to combine an
EMG-based recognizer with a conventional system, achiev-
ing a significant improvement in the presence of ambient
noise (Chan, 2003). In (Jorgensen et al., 2003), the authors
proved the applicability of myoelectric signals for non-
audible speech recognition, reporting 92% word accuracy
on a set of six control words.

Recent research studies aim to overcome the major lim-
itations of today’s sEMG-based speech recognition systems
and applications, to, for example:

� remove the restriction of words or commands spoken in
isolation and evolve toward a less limited, more user-
friendly continuous speaking style (Maier-Hein et al.,
2005);
� allow for acoustic units smaller than words or phrases,

enabling large vocabulary recognition systems (Wall-
iczek et al., 2006; Schultz and Wand, this issue);
� implement alternative modeling schemes such as articu-

latory phonetic features to enhance phoneme models
(Jou et al., 2007; Schultz and Wand, this issue);
� study the effects of electrode re-positioning (Maier-Hein

et al., 2005) and more robust signal preprocessing (Jor-
gensen and Binsted, 2005; Jou et al., 2006);
� examine the impact of speaker dependencies on the

myoelectric signal (Wand and Schultz, 2009);
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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� investigate real-life applicability, by augmenting conven-
tional speech recognition systems (Chan et al., 2001;
Chan, 2003), and addressing size, attachment, and
mobility of the capturing devices (Manabe et al., 2003,
Manabe and Zhang, 2004).

Most of the early studies furthermore reported results on a
small number of words spoken in isolation (an example of
an experimental setup appears in Fig. 5) (Chan et al., 2001;
Jorgensen et al., 2003; Maier-Hein et al., 2005), whereas
recent work has shown, for example, that larger vocabular-
ies of 100 words can be recognized with a word accuracy of
around 70% in a single speaker setup (Jou et al., 2006). The
training of reliable acoustic models for a larger vocabulary
of course requires breaking words into sequences of sub-
word units, such as syllables, phonemes, or even context
dependent model units. Jorgensen and Binsted (2005)
applied phonemes as units for vowel and consonant classi-
fication, and Walliczek et al. (2006) compared a variety of
units on a 100-word vocabulary in continuously spoken
speech. A successful application of articulatory features
to augment phoneme based units was presented by Jou
et al. (2007) and Schultz and Wand (this issue) describe
the training of context dependent phonetic feature bundles,
which further improved recognition performance on the
same 100-word vocabulary, with up to 90% word accuracy
in a speaker dependent setup. Finally, Wand and Schultz
(2009) have presented initial experiments on speaker inde-
pendent and speaker adaptive sEMG-based speech recog-
nition, based on a large collection of EMG data recorded
from 78 speakers reading sentences in both audible and
silent speaking mode, in a collaboration between Carnegie
Mellon and Pittsburgh University.

The applicability of EMG-based speech recognition in
acoustically harsh environments, such as first responder
tasks where sirens, engines, and firefighters breathing appa-
ratus may interfere with reliable communication, has been
investigated at NASA. For example, Jorgensen and col-
leagues (Betts et al., 2006) achieved 74% accuracy on a
Fig. 5. Demonstration of the Silent Speech Recognizer developed at
Carnegie Mellon and University of Karlsruhe (Maier-Hein et al., 2005).
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15-word classification task, in a real-time system which
was applied to subjects exposed to a 95 dB noise level.

There has also been interesting work at Ambient Corpo-
ration in the United States, who report the development of
a system whose inputs are surface EMG signals from one
or more electrodes placed above the larynx. To operate
the system, the user issues commands by speaking silently
to himself, without opening the lips or uttering any sound.
Increased activation in the laryngeal muscles is then
detected by the system, and classified using a speaker-
dependent HMM-based speech recognizer. A prototype
deployed in late 2007 demonstrated a vocabulary of four
to six directional commands, and could be used to steer a
motorized wheelchair (Hasegawa-Johnson, 2008).

Current EMG recording systems still lack practicability
and user-friendliness. For example, the surface electrodes
need to be firmly attached to the skin for the duration of
the recording. Manabe and colleagues have addressed these
issues by developing ring-shaped electrodes wrapped
around the thumb and two fingers (Manabe et al., 2003;
Manabe and Zhang, 2004). To capture the EMG signals
from facial muscles, the fingers are pressed against the face
in a particular manner. It should be possible to perfect such
a system for a mobile interface that can be used in both
silent and noisy environments.

Electromyography thus captures electrical stimuli from
the articulator muscles or the larynx, which can subsequently
be exploitated in speech processing applications. One may
also imagine, however, capturing viable speech biosignals
directly from the brain, using electroencephalography
(EEG) or implanted cortical electrodes. These possibilities
are discussed in the following two sections. Although consid-
erably further off in terms of commercial application, these
Brain Computer Interface (BCI) approaches – very much
in vogue today – are fascinating, and hold enormous promise
for speech, as well as for other types of applications.

3.6. Interpretation of signals from electro-encephalographic

(EEG) sensors

In addition to its well-known clinical applications, elec-
troencephalography has also recently proven to be useful
for a multitude of new methods of communication. EEG-
based BCIs have consequently become an increasingly
active field of research. Good overviews can be found in
(Dornhege et al., 2007) and in (Wolpaw et al., 2002), while
Lotte et al. (2007) provides a review of classification algo-
rithms. Examples of some current BCIs include the
‘‘Thought Translation Device” (Birbaumer, 2000) and the
‘‘Berlin Brain Computer Interface” (Blankertz et al.,
2006). The aim of a BCI is to translate the thoughts or
intentions of a subject into a control signal suitable for
operating devices such as computers, wheelchairs or pros-
theses. Suppes et al. (1997) were the first to show that iso-
lated words can be recognized based on EEG and MEG
(magnetoencephalography) recordings. Using a BCI
usually requires the users to explicitly manipulate their
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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brain activity, which is then transformed into a control sig-
nal for the device (Nijholt et al., 2008). This typically
involves a learning process which may last several months,
as described, for example, in (Neuper et al., 2003).

In order to circumvent this time consuming learning
process, as well as develop a more intuitive communica-
tions interface based on silent speech, Wester and Schultz
(2006) investigated a new approach which directly recog-
nizes ‘‘unspoken speech” in brain activity measured by
EEG signals (see Fig. 6). ‘‘Unspoken speech” here refers
to the process in which a user imagines speaking a given
word without actually producing any sound, indeed with-
out performing any movement of the articulatory muscles
at all. Such a method should be applicable in situations
where silent speech input is preferable – telecommunica-
tions and the like – as well as for persons unable to speak
because of physical disabilities, such as locked-in syn-
drome, and who consequently have very limited options
for communicating with their environment. During the
study, 16 channel EEG data were recorded using the Inter-
national 10-20 system; results indicated that the motor cor-
tex, Broca’s and Wernicke’s areas were the most relevant
EEG recording regions for the task. The system was able
to recognize unspoken speech from EEG signals at a prom-
ising recognition rate – giving word error rates on average
4–5 times higher than chance on vocabularies of up to ten
words. In a followup study, Porbadnigk et al. (2009) dis-
covered that temporally correlated brain activities tend to
superimpose the signal of interest, and that cross-session
training (within subjects) yields recognition rates only at
chance level. These analyses also suggested several
improvements for future investigations:

– using a vocabulary of words with semantic meaning to
improve recognition results;

– increasing the number of repetitions of each word (20
were used in the study) and normalizing phrase lengths,
in order to improve the model training;
Fig. 6. EEG-based recognition system for unspoken speech (Wester and
Schultz, 2006).
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– providing the subject with feedback on whether words
were correctly recognized. Birbaumer (2000) showed
that subjects can be trained to modify their brain waves
when using an EEG-based BCI; subjects may thus be
able to adapt their brain waves to enable words to be
recognized more easily.

In another study, DaSalla and colleagues (DaSalla et al.,
2009) proposed a control scheme for a silent speech BCI
using neural activities associated with vowel speech imag-
ery. They recorded EEG signals in three healthy subjects
performing three tasks: unspoken speech of the English
vowels /a/ and /u/; and a no-action state as a control. Sub-
jects performed 50 trials for each task, with each trial con-
taining two seconds of task-specific activity. To
discriminate between tasks, the authors designed spatial fil-
ters using the common spatial patterns (CSP) method. Tak-
ing 20 randomly selected trials from each of two tasks, the
EEG time series data were decomposed into spatial pat-
terns which were both common between, and optimally
discriminative for, the two tasks. Applying these spatial fil-
ters to new EEG data produced new times series optimized
for classification. Since the CSP method is limited to two-
class discriminations, spatial filters for all pair-wise combi-
nations of the three tasks were designed. Resultant spatial
patterns showed mostly symmetrical activations centered at
the motor cortex region, specifically the Cz and Fz posi-
tions in the International 10-20 system. After spatially fil-
tering the EEG data, the authors trained a nonlinear
support vector machine using the previously selected 20 tri-
als per task, and classified the remaining 30 trials per task.
This randomized training and testing procedure was
repeated 20 times to achieve a 20-fold cross validation.
Accuracies and standard deviations (in%) obtained for
the three subjects were 78 ± 5, 68 ± 7 and 68 ± 12. The
study thus shows that motor cortex activations associated
with imaginary vowel speech can be classified, with accura-
cies significantly above chance, using CSP and a nonlinear
classifier. The authors envision the proposed system pro-
viding a natural and intuitive control method for EEG-
based silent speech interfaces.

3.7. Interpretation of signals from implants in the speech-

motor cortex

The SSIs discussed thus far have been based on rela-
tively non-invasive sensing techniques such as US, EMG
and EEG, and others. Attempts have also recently been
made to utilize intracortical microelectrode technology
and neural decoding techniques to build an SSI which
can restore speech communication to paralyzed individuals
(Kennedy, 2006; Brumberg et al., 2007, 2008; Guenther
et al., 2008; Bartels et al., 2008), or to restore written com-
munication through development of mouse cursor control
BCIs for use with virtual keyboards (Kennedy et al.,
2000) and other augmentative and alternative communica-
tion (AAC) devices (Hochberg et al., 2008). A number of
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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factors must be considered for an intracortical microelec-
trode SSI, though two stand out as the most important:
choice of electrode and decoding modality.

3.7.1. Electrode choice

A successful intracortical SSI requires electrodes capable
of chronic human implantation. These electrodes must be
durable and provide consistent observations of neural sig-
nals. Early on in neurophysiological research, intracortical
electrodes were simply not designed for long term use in a
behaving animal. However, recent advances have yielded
designs which have been used in human subjects and are
capable of recording from dozens of isolated neurons over
many years (Kennedy and Bakay, 1998; Kennedy et al.,
2000; Hochberg et al., 2006, 2008; Bartels et al., 2008).
Two electrode designs in particular have been implanted
in human subjects for the purpose of brain computer inter-
facing: the Utah microelectrode array (Maynard et al.,
1997; Hochberg et al., 2006), and the Neurotrophic Elec-
trode (Kennedy, 1989; Bartels et al., 2008).

The Utah array consists of a single silicon wafer with
many (commonly �96) recording electrodes and is
implanted on the surface of the cerebral cortex. The record-
ing electrodes penetrate the cortical surface and sample
from neurons in close proximity to the recording tips.
The Neurotrophic Electrode differs in fundamental design
from the Utah array. Rather than utilizing many recording
tips, the Neurotrophic Electrode utilizes few, low imped-
ance wires, encased in a glass cone filled with a neurotro-
phic growth factor. The entire assembly is implanted into
the cortex, as with the Utah array, but the growth factor
then encourages nearby cells to send neurite projections
(i.e. axons and dendrites) to the implanted cone. The result
is that the neurites are ‘‘captured” by the glass cone, ensur-
ing that the recording wires are recording from a viable
neural source. Today, both types electrodes have been used
in human volunteers with severe paralysis, and have
remained operational for many years.

3.7.2. Decoding modality

The decoding modality is critically important for neural
prosthesis development in general, but it is possible (as
illustrated in the following) that many modalities can be
possible for SSIs. Modality in this context refers to the nat-
ure of the signal decoded or interpreted from observed neu-
ral activity. A common decoding modality in neural
prosthesis design is arm and hand kinematics. For instance,
an electrode can be implanted in the hand area of a mon-
key or human motor cortex, and a device can be con-
structed to interpret the neural activity as related to the
subject’s movements or intended movements. In humans,
this particular decoding modality has been used to provide
mouse pointer control for BCIs in paralyzed individuals
(Kennedy et al., 2000; Hochberg et al., 2006; Kim et al.,
2007; Truccolo et al., 2008). For an SSI, a hand kinematic
decoding modality may only be used for communication
via BCI pointer control, for example by choosing letters
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
on a virtual keyboard, selecting words on a graphical inter-
face or utilizing graphical AAC devices with mouse pointer
interfaces in general.

Though neural decoding of hand kinematics is
grounded in decades of neurophysiological research
(e.g., Georgopoulos et al., 1982), the modality is not nat-
ural for speech production. Given this limitation, recent
research has been aimed at decoding or predicting char-
acteristics of speech directly from cortical areas mediat-
ing speech production (Kennedy, 2006; Brumberg et al.,
2007, 2008; Guenther et al., 2008). Specifically, these
investigations studied the relationship between neural
activity in the speech-motor cortex and production of
discrete speech sound segments (i.e., phonemes) and trea-
ted speech production as a complex motor task rather
than an abstract language problem.

In this speech motor control approach, intracortical
electrodes are implanted into the speech-motor cortex
rather than the hand area. Early attempts focused pri-
marily on the discrete prediction of individual phonemes
based on the ensemble activity of a population of neural
units (Miller et al., 2007; Wright et al., 2007). More
recent work has placed the problem of speech motor
decoding within a framework analogous to arm and
hand kinematics decoding. Within this framework, the
most straightforward decoding modality for a speech
motor cortical implant is vocal tract, or speech articula-
tory (i.e., jaw, lips, tongue, etc.) kinematics. A nearly
equivalent alternative modality to vocal tract kinematics
for speech decoding is an acoustic representation of
sounds produced during the act of speaking. In particu-
lar, formant frequencies (the resonant frequencies of the
vocal tract) are inherently linked to the movements of
the speech articulators and provide an acoustic alterna-
tive to motor kinematics that has already been incorpo-
rated into speech neural prosthesis designs (Brumberg
et al., 2007, 2008; Guenther et al., 2008). Both speech
articulatory and acoustic modalities are appropriate for
decoding intended speech from an intracortical micro-
electrode implanted in the speech-motor cortex; there-
fore, they are well suited for invasive silent speech
interfaces.

4. Conclusions and perspectives

Seven current candidate SSI technologies have now been
introduced. Further details on the majority of the methods,
as well as some of recent results, may be found in the
accompanying articles of this special issue. In this final sec-
tion of the present article, we attempt to draw some overall
conclusions on the current SSI situation. We begin with an
outline of common challenges faced by SSI researchers, as
a consequence of the unique nature of the SSI problem,
which sets it apart from traditional speech processing sys-
tems. A second subsection then makes a qualitative com-
parison of the different methods by highlighting the
relative benefits and drawbacks of each approach accord-
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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ing to a set of simple criteria. Finally, we propose some
possible directions for future exploration, which may
hopefully lead to useful new products and services emerg-
ing from the nascent, interdisciplinary field of SSIs.

4.1. Common challenges

Sensor positioning and robustness – In all of the technol-
ogies presented, the sensors used must be carefully posi-
tioned to obtain the best response. In a system sensitive
to the orientation of the tongue surface in an ultrasound
image, for instance, any movement of the probe consists
of a change of image reference frame, which has to be
taken into account. EMA, EMG, and EEG are also sensi-
tive to variations in sensor positioning, and researchers
using NAM and EM/vibration technology have reported
the need to find ‘‘sweet spots” in which to place their
devices for best results. A corollary to these observations
is that unavoidable changes in sensor position or orienta-
tion introduced at the beginning of each new acquisition
can give session-dependent results once the subsequent sig-
nal processing algorithms are applied. Systematic ways of
ensuring optimal, repeatable sensor positioning have not
yet been adequately addressed in the experimental SSI sys-
tems presented to date. Further research will be necessary
to find ways of ensuring that the SSI sensors used remain
attuned to the relevant articulatory information in robust
ways.

Speaker independence – A related concern is speaker
independence. While audio-based speech recognition has
made excellent progress in speaker independence, the situ-
ation may be quite different when the features which feed
the recognition system depend, for example, on the speak-
er’s anatomy, or the exact synaptic coding inherent in
movements of his or her articulatory muscles. Most of
the systems we have presented have only just begun to
assess speaker independence. The extent to which it will
influence the advancement of SSI development is thus as
yet not known.

Lombard and silent speech effects – Speakers are known
to articulate differently when deprived of auditory feedback
of their own speech, for example in high-noise environ-
ments – the so-called Lombard effect. Lombard speech will
thus be an issue for SSIs unless they are able to provide a
high-quality, synchronous audio signal via an earphone,
which is of course a very challenging task. Beyond the
Lombard effect resides the additional question of whether
speakers articulate differently when speaking silently, either
in quiet or in noisy environments, and most indications are
that silent and vocalised articulation are indeed not identi-
cal. In any case, the best practice would no doubt be to
train SSI systems on silent speech, rather than audible
speech, since this is the context in which they will ulti-
mately operate. To do so is experimentally much more dif-
ficult, however, since the absence of an audio stream
precludes using standard ASR tools for labelling and seg-
menting SSI sensor data, not to mention hindering the
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
development of an output speech synthesizer for the SSI.
Although some SSI researchers have already begun to
address these issues, substantial further research, again,
will be required in order to discover what the actual stum-
bling blocks will be here.

Prosody and nasality – For SSI applications in which a
realistic output synthesis is envisaged, the production of a
viable prosody is a critical issue, since the glottal signal nec-
essary for pitch estimation is either completely absent or
substantially modified. When a recognition step precedes
synthesis, lexical and syntactical cues could in principal
be used to alleviate this problem to a certain extent, but
the task is quite difficult. The problem is similar to that
encountered by electrolarynx users, who are forced to con-
tend with a constant, monotonous F0 value. Some of these
products today provide an external thumbwheel for vari-
able pitch control, and perhaps a similar solution could
prove appropriate for SSIs. In addition to prosody,
depending on the SSI technology used, information on
nasality may also be absent. The possibility of recovering
prosody and nasality, using context or artificial compensa-
tory mechanisms, will be an additional topic for future
research.

Dictionaries – Continuous speech ASR is a difficult task,
particularly in real-time interactive and portable systems. It
seems likely that the first useful SSI applications will con-
centrate on the more easily realizable goal of limited vocab-
ulary speech recognition. A common challenge for all of
the potential technologies will then be the creation of dic-
tionaries which are of limited size, but rich enough to be
genuinely useful for the SSIs tasks and scenarios for which
they are tailored, e.g., telephony, post-laryngectomy speech
aids, verbal command recognition, and the like.

4.2. Comparison of the technologies

It is difficult to compare SSI technologies directly in a
meaningful way. Since many of the systems are still preli-
minary, it would not make sense, for example, to compare
speech recognition scores or synthesis quality at this stage.
With a few abstractions, however, it is possible to shed
light on the range of applicability and the potential for
future commercialization of the different methods. To
carry out our analysis, we have chosen to ‘‘fast forward”

to a situation in which all of technologies are ‘‘working”.
To be classified as such, an SSI should be able to genuinely
enable useful silent speech processing tasks – essentially
recognition and synthesis – as well as present a relatively
portable, human-oriented form factor. Clearly, we have
left out the possibility that one or another of the technol-
ogies ultimately fails to meet these criteria, for example if
the chosen sensors simply do not provide enough informa-
tion about the speech production process to enable useful
subsequent processing; but that need not concern us here.
For the purposes of our assessment, we have defined a set
of 6 criteria, ranked on a scale of 1 (worst) to 5 (best), as
defined below:
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002
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� Works in silence – Can the device be operated silently?
� Works in noise – Is the operation of the device affected

by background noise?
� Works for laryngectomy – Can the device be used by

post-laryngectomy patients? It may be useful for other
pathologies as well, but laryngectomy is used as a
baseline.
� Non-invasive – Can the device be used in a natural fashion,

without uncomfortable or unsightly wires, electrodes, etc.?
� Ready for market – Is the device close to being marketed

commercially? This axis also takes into the account in a
natural way the current technological advancement of
the technique, responding, in essence, to the question,
‘‘How well is this technology working as of today?”.
� Low cost – Can the final product be low cost? The

answer will depend, among other factors, on whether
any ‘‘exotic” technologies or procedures are required
to make the device function.

The comparisons we make will clearly be qualitative, and
should not be considered as being in any sense exact. In
the next paragraphs, we first rank each of the seven tech-
nologies with a grade from 1 to 5 in each of the 6 catego-
ries, giving brief explanations for the marks given. This
ranking is summarized in Fig. 7 on six-axis ‘‘spiderweb”

plots of the different technologies. For the purposes of
the comparison, we have adopted shortened labels for the
seven technologies, for convenience: EMA markers; US/
imaging; NAM; EM/vibration; EMG electrodes, EEG
electrodes; and BCI cortical.

4.2.1. EMA markers

Works in silence: 5 – Silent articulation is possible.
Works in noise: 5 – Background noise does not affect the
operation.
Works for laryngectomy: 5 – No glottal excitation is
necessary.
Non-invasive: 2 – Magnetic beads need to be fixed per-
manently on the tongue and other articulators.
Ready for market: 2 – Published recognition results to
date are promising but still preliminary.
Low cost: 4 – The magnetic beads, detectors, and associ-
ated electronics can probably be manufactured very
cheaply.

4.2.2. US/imaging

Works in silence: 5 – Silent articulation is possible.
Works in noise: 5 – Background noise does not affect the
operation.
Works for laryngectomy: 5 – No glottal activity is
required.
Non-invasive: 4 – Miniaturisation of ultrasound and
camera and gel-free coupling should eventually lead to
a relatively portable and unobtrusive device.
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, Spee
Ready for market: 3 – Recognition results suggest a use-
ful, limited vocabulary device should not be far off, but
instrumental developments are still necessary.
Low cost: 3 – Although costs much below those of med-
ical ultrasound devices should eventually be possible,
ultrasound remains a non-trivial technology.
4.2.3. NAM

Works in silence: 4 – The device is nearly, but not totally
silent, and could be inappropriate for the most demand-
ing non-eavesdropping scenarios.
Works in noise: 4 – Researchers have reported problems
with noise caused by clothing, hair, respiration, etc.
Works for laryngectomy: 2 – The device requires an
external vibrator in order to work for laryngectomees;
results on this so far seem preliminary.
Non-invasive: 4 – The device resembles 2 large buttons
held behind the ears with a headband or collar.
Ready for market: 5 – Commercial systems are already
available in Japan.
Low cost: 5 – The devices can be mass produced very
cheaply.

4.2.4. EM/vibration

Works in silence: 1 – Glottal activity is required.
Works in noise: 5 – The devices are designed to work
well in noisy environments.
Works for laryngectomy: 1 – Glottal activity is required.
Non-invasive: 4 – The devices are relatively small and
unobtrusive, often resembling a neckband.
Ready for market: 4 – Some of these devices are already
commercially available.
Low cost: 3 – Some of the technologies, such as GEMS
and pulse radar, are not completely trivial.

4.2.5. EMG electrodes

Works in silence: 5 – Silent articulation is possible.
Works in noise: 5 – Background noise does not affect the
operation.
Works for laryngectomy: 5 – No glottal activity is
required.
Non-invasive: 4 – A facemask-like implementation
should eventually be possible, thus eliminating unsightly
glued electrodes.
Ready for market: 3 – EMG sensors and their associated
electronics are already widely available.
Low cost: 4 – The sensors and the data processing sys-
tem are relatively manageable.

4.2.6. EEG electrodes

Works in silence: 5 – Silent articulation is possible.
Works in noise: 5 – Background noise does not affect the
operation.
ch Comm. (2009), doi:10.1016/j.specom.2009.08.002
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Works for laryngectomy: 5 – No glottal activity is
required.
Non-invasive: 3 – Today’s systems require a skull cap
and conductive gel under each electrode. Ultimately,
an articulated, gel-free helmet such as those proposed
for some video games may be possible.
Ready for market: 1 – Tests to date are promising, but
still very preliminary.
Low cost: 4 – The electrodes and signal processing elec-
tronics are relatively standard; commercial EEG systems
(although not for speech) exist today.

4.2.7. BCI cortical

Works in silence: 5 – Silent articulation is possible.
Works in noise: 5 – Background noise does not affect the
operation.
Works for laryngectomy: 5 – No glottal activity is
required.
Non-invasive: 1 – Cortical electrodes must be implanted.
Ready for market: 1 – The results to date are interesting
but quite preliminary.
Low cost: 1 – Brain surgery is required to implant the
electrodes in the cortex.

4.3. Future directions

Fig. 7 shows that no SSI technology today proposes a
device responding fully to the demands of all six axes of
evaluation. Reaching this goal will likely require advances
both in instrumentation and in signal processing. On the
instrumentation side, three main lines of attack seem
pertinent:

– First, the efforts being carried out on the individual tech-
nologies are in many cases still in the early stages. These
projects need to continue and expand in order to extract
the maximum potential from each technique.

– The systems being developed for SSIs today make use of
technologies borrowed from other domains, such as gen-
eral-purpose medical imaging or diagnostics. It would be
interesting to develop dedicated instruments explicitly
for use in the SSI field – for example, a customized ultra-
sound probe designed to highlight features which are the
most pertinent for speech recognition and synthesis.

– Finally, it will be interesting to combine technologies in a
multi-sensor device and perform data fusion, in hopes that
the complementarity of the acquired streams can overcome
the shortcomings of some of the devices on their own.

Signal processing and modeling advances in the SSI field
are likely to come from one of two possible directions:

– techniques facilitating speech recognition and synthesis
from incomplete representations of speech production
mechanisms; and,
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
– a continued and enhanced symbiosis between the more
‘‘expert” type methods popular in articulatory inversion
research, and the machine learning oriented approaches
being employed in the majority of the current SSI
investigations.

Finally, as this paper was going to press, Alcatel-Lucent Cor-
poration issued a press release claiming an experimental
eighth SSI technology based on low frequency ultrasound
reflectrometry (Moeller, 2008). It will likely turn out, quite
fittingly, that the last word on SSIs technologies – has not
been spoken!
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mes Journées d’Etude sur la Parole, Aussois, France, pp. 425–
428.

Baken, R.J., Robbins, J., Fisher, H., Blom, E., Singer, M., 1984. A
comparative acoustic study of normal, esophageal and tracheoesoph-
ageal speech production. J. Speech Hearing Disorders 49, 202–
210.

Bartels, J.L., Andreasen, D., Ehirim, P., Mao, H., Seibert, S., Wright, E.J.,
Kennedy, P.R., 2008. Neurotrophic electrode: method of assembly and
implantation into human motor speech cortex. J. Neurosci. Methods
174 (2), 168–176.

Betts, B.J., Binsted, K., Jorgensen, C., 2006. Small-vocabulary speech
recognition using surface electromyography. Interact. Comput.: Inter-
disciplinary J. Human–Comput. Interact. 18, 1242–1259.

Birbaumer, N., 2000. The thought translation device (TTD) for com-
pletely paralyzed patients. IEEE Trans. Rehabil. Eng. 8 (2), 190–193.

Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., Kunzmann,
V., Losch, F., Curio, G., 2006. The Berlin brain–computer interface:
EEG-based communication without subject training. IEEE Trans.
Neural Systems Rehabil. Eng. 14 (2), 147–152.

Blom, E.D., Singer, M.I., 1979. Surgical prosthetic approaches for
postlaryngectomy voice restoration. In: Keith, R.L., Darley, F.C.
(Eds.), Laryngectomy Rehabilitation. Texas College Hill Press, Hous-
ton, pp. 251–276.

Bos, J.C., Tack, D.W., 2005. Speech Input Hardware Investigation for
Future Dismounted Soldier Computer Systems, DRCD Toronto CR
2005-064.

Brown, D.R., Ludwig, R., Pelteku, A., Bogdanov, G., Keenaghan, K.,
2004. A novel non-acoustic voiced speech sensor. Meas. Sci. Technol.
15, 1291–1302.
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002

http://dx.doi.org/10.1016/j.specom.2009.08.002


16 B. Denby et al. / Speech Communication xxx (2009) xxx–xxx

ARTICLE IN PRESS
Brown, D.R., Keenaghan, K., Desimini, S., 2005. Measuring glottal
activity during voiced speech using a tuned electromagnetic resonating
collar sensor. Meas. Sci. Technol. 16, 2381–2390.

Brumberg, J.S., Andreasen, D.S., Bartels, J.L., Guenther, F.H., Kennedy,
P.R., Siebert, S.A., Schwartz, A.B., Velliste, M., Wright, E.J., 2007.
Human speech cortex long-term recordings: formant frequency anal-
yses. In: Neuroscience Meeting Planner 2007, Program No. 517.17,
San Diego, USA.

Brumberg, J.S., Nieto-Castanon, A., Guenther, F.H., Bartels, J.L.,
Wright, E.J., Siebert, S.A., Andreasen, D.S., Kennedy, P.R., 2008.
Methods for construction of a long-term human brain machine
interface with the Neurotrophic Electrode. In: Neuroscience Meeting
Planner 2007, Program No. 779.5, Washington, DC.

Brumberg, J.S, Nieto-Castanon, A., Kennedy, P.R., Guenther, F.H., this
issue. Brain–computer interfaces for speech communication. Speech
Comm.

Burnett, G.C., Gable, T.G., Holzrichter, J.F., Ng, L.C., 1997. Voiced
excitation functions calculated from micro-power impulse radar
information. J. Acoust. Soc. Amer. 102, 3168(A).

Carstens Medizinelektronik, 2008. <http://www.articulograph.de/>.
Chan, A.D.C., Englehart, K., Hudgins, B., Lovely, D.F., 2001. Myo-

electric signals to augment speech recognition. Med. Biological Eng.
Comput. 39, 500–504.

Chan, A.D.C., 2003. Multi-expert automatic speech recognition system
using myoelectric signals. Ph.D. Dissertation, Department of Electrical
and Computer Engineering, University of New Brunswick, Canada.

Crevier-Buchman, L., 2002. Laryngectomy patients and the psychological
aspects of their tracheostomy. Rev. Laryngol. Otolaryngol. Rhinol.
123, 137–139.

Davidson, L., 2005. Comparing tongue shapes from ultrasound imaging
using smoothing spline analysis of variance. J. Acoust. Soc. Amer. 120
(1), 407–415.

DaSalla, C.S., Kambara, H., Sato, M., Koike, Y., 2009. Spatial filtering
and single-trial classification of EEG during vowel speech imagery. In:
Proceedings of the 3rd International Convention on Rehabilitation
Engineering & Assistive Technology, Singapore. Article No. 27. ACM,
New York, NY, USA. ISBN:978-1-60558-792-9.

Dekens, T., Patsis, Y., Verhelst, W., Beaugendre, F., Capman, F., 2008. A
multi-sensor speech database with applications towards robust speech
processing in hostile environments. In: Proc. 6th Internat. Language
Resources and Evaluation (LREC’08), European Language Resources
Association (ELRA), Marrakech, Morocco, 28–30 May 2008.

Denby, B., Stone, M., 2004. Speech synthesis from real time ultrasound
images of the tongue. In: Proc. IEEE Internat. Conf. on Acoustics,
Speech, and Signal Processing, (ICASSP’04), Montréal, Canada, 17–21
May 2004, Vol. 1, pp. I685–I688.

Denby, B., Oussar, Y., Dreyfus, G., Stone, M., 2006. Prospects for a Silent
Speech Interface Using Ultrasound Imaging. IEEE ICASSP, Tou-
louse, France, pp. I365–I368.

Dornhege, G., del R. Millan, J., Hinterberger, T., McFarland, D., Müller,
K.-R. (Eds.), 2007. Towards Brain–Computer Interfacing. MIT Press.

Drummond, S., Dancer, J., Krueger, K., Spring, G., 1996. Perceptual and
acoustical analysis of alaryngeal speech: determinants of intelligibility.
Percept. Motor Skills 83, 801–802.

Dupont, S., Ris, C., 2004. Combined use of close-talk and throat
microphones for improved speech recognition under non-stationary
background noise. In: Proc. Robust 2004, Workshop (ITRW) on
Robustness Issues in Conversational Interaction, Norwich, UK,
August 2004.

Epstein, C.M., 1983. Introduction to EEG and evoked potentials. J.B.
Lippincot Co.

Epstein, M.A., 2005. Ultrasound and the IRB. Clin. Linguist. Phonet. 16
(6), 567–572.

Fagan, M.J., Ell, S.R., Gilbert, J.M., Sarrazin, E., Chapman, P.M., 2008.
Development of a (silent) speech recognition system for patients
following laryngectomy. Med. Eng. Phys. 30 (4), 419–425.

Fitzpatrick, M., 2002. Lip-reading cellphone silences loudmouths, New
Scientist, edition of 03 April 2002.
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
Furui, S., 2001. Digital Speech Processing Synthesis and Recognition,
second ed. Marcel Dekker.

Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T., 1982. On
the relations between the direction of two-dimensional arm movements
and cell discharge in primate motor cortex. J. Neurosci. 2 (11), 1527–
1537.

Gibbon, F., 2005. Bibliography of Electropalatographic (EPG) Studies in
English (1957–2005), Queen Margaret University, Edinburgh, UK,
September 2005. <http://www.qmu.ac.uk/ssrc/cleftnet/EPG_biblio_
2005_september.pdf>.

Gracco, V.L., Tremblay, P., Pike, B., 2005. Imaging speech production
using fMRI. NeuroImage 26 (1), 294–301, 15 May.

Guenther, F.H., Brumberg, J.S., Nieto-Castanon, A., Bartels, J.L.,
Siebert, S.A., Wright, E.J., Tourville, J.A., Andreasen, D.S., Kennedy,
P.R., 2008. A brain–computer interface for real-time speech synthesis
by a locked-in individual implanted with a Neurotrophic Electrode. In:
Neuroscience Meeting Planner 2008, Program No. 712.1, Washington,
DC.

Hasegawa, T., Ohtani, K., 1992. Oral image to voice converter, image
input microphone. In: Proc. IEEE ICCS/ISITA 1992 Singapore, Vol.
20, No. 1, pp. 617–620.

Hasegawa-Johnson, M., 2008. Private communication.
Heracleous, P., Kaino, T., Saruwatari, H., Shikano, K., 2007. Unvoiced

speech recognition using tissue-conductive acoustic sensor. EURASIP
J. Adv. Signal Process. 2007 (1), 1–11.

Hirahara, T., Otani, M., Shimizu, S., Toda, M., Nakamura, K.,
Nakajima, Y., Shikano, K., this issue. Silent-speech enhancement
system utilizing body-conducted vocal-tract resonance signals. Speech
Comm.

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M.,
Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P.,
2006. Neuronal ensemble control of prosthetic devices by a human
with tetraplegia. Nature 442 (7099), 164–171.

Hochberg, L.R., Simeral, J.D., Kim, S., Stein, J., Friehs, G.M., Black,
M.J., Donoghue, J.P., 2008. More than two years of intracortically-
based cursor control via a neural interface system. In: Neurosicence
Meeting Planner 2008, Program No. 673.15, Washington, DC.

Holmes, J., Holmes, W., 2001. Speech Synthesis and Recognition. Taylor
and Francis.

Hoole, P., Nguyen, N., 1999. Electromagnetic articulography in coartic-
ulation research. In: Hardcastle, W.H., Hewlitt, N. (Eds.), Coarticu-
lation: Theory, Data and Techniques. Cambridge University Press, pp.
260–269.

House, D., Granström, B., 2002. Multimodal speech synthesis: improving
information flow in dialogue systems using 3D talking heads. In:
Artificial Intelligence: Methodology, Systems, and Applications.
Lecture Notes in Computer Science, Vol. 2443/2002. Springer,
Berlin/Heidelberg, pp. 65–84.

Hueber, T., Aversano, G., Chollet, G., Denby, B., Dreyfus, G., Oussar,
Y., Roussel, P., Stone, M., 2007a. Eigentongue feature extraction for
an ultrasound-based silent speech interface. In: IEEE Internat. Conf.
on Acoustic, Speech, and Signal Processing, ICASSP07, Honolulu,
Vol. 1, pp. 1245–1248.

Hueber, T., Chollet, G., Denby, B., Stone, M., Zouari, L, 2007b. Ouisper:
corpus based synthesis driven by articulatory data. In: Internat.
Congress of Phonetic Sciences, Saarbrücken, Germany, pp. 2193–2196.

Hueber, T., Chollet, G., Denby, B., Dreyfus, G., Stone, M., 2007c.
Continuous-speech Phone Recognition from Ultrasound and Optical
Images of the Tongue and Lips. Interspeech, Antwerp, Belgium, pp.
658–661.

Hueber, T., Chollet, G., Denby, B., Dreyfus, G., Stone, M., 2008a. Phone
Recognition from Ultrasound and Optical Video Sequences for a
Silent Speech Interface. Interspeech, Brisbane, Australia, pp. 2032-
2035.

Hueber, T., Chollet, G., Denby, B., Stone, M., 2008b. Acquisition of
ultrasound, video and acoustic speech data for a silent-speech interface
application. In: Internat. Seminar on Speech Production, Strasbourg,
France, pp. 365–369.
peech Comm. (2009), doi:10.1016/j.specom.2009.08.002

http://www.articulograph.de/
http://www.qmu.ac.uk/ssrc/cleftnet/EPG_biblio_2005_september.pdf
http://www.qmu.ac.uk/ssrc/cleftnet/EPG_biblio_2005_september.pdf
http://dx.doi.org/10.1016/j.specom.2009.08.002


B. Denby et al. / Speech Communication xxx (2009) xxx–xxx 17

ARTICLE IN PRESS
Hueber, T., Benaroya, E.-L., Chollet, G., Denby, B., Dreyfus, G., Stone,
M., this issue. Development of a silent speech interface driven by
ultrasound and optical images of the tongue and lips. Speech Comm.

Hummel, J., Figl, M., Birkfellner, W., Bax, M.R., Shahidi, R., Maurer,
C.R., Bergmann, H., 2006. Evaluation of a new electromagnetic
tracking system using a standardized assessment protocol. Phys. Med.
Biol. 51, N205–N210.

IEEE, 2008. Brain Computer Interfaces, IEEE Computer, Vol. 41, No. 10,
October 2008.

Jorgensen, C., Lee, D.D., Agabon, S., 2003. Sub auditory speech
recognition based on EMG signals. In: Proc. Internat. Joint Conf.
on Neural Networks (IJCNN), pp. 3128–3133.

Jorgensen, C., Binsted, K., 2005. Web browser control using EMG based
sub vocal speech recognition. In: Proc. 38th Annual Hawaii Internat.
Conf. on System Sciences. IEEE, pp. 294c.1–294c.8.

Jorgensen, C., Dusan, S., this issue. Speech interfaces based upon surface
electromyography. Speech Comm.

Jou, S., Schultz, T., Walliczek, M., Kraft, F., 2006. Towards continuous
speech recognition using surface electromyography. In: INTER-
SPEECH 2006 and 9th Internat. Conf. on Spoken Language Process-
ing, Vol. 2, pp. 573–576.

Jou, S., Schultz, T., Waibel, A., 2007. Multi-stream articulatory feature
classifiers for surface electromyographic continuous speech recogni-
tion. In: Internat. Conf. on Acoustics, Speech, and Signal Processing.
IEEE, Honolulu, Hawaii.

Kennedy, P.R., 1989. The cone electrode: a long-term electrode that
records from neurites grown onto its recording surface. J. Neurosci.
Methods 29, 181–193.

Kennedy, P.R., 2006. Comparing electrodes for use as cortical control
signals: tiny tines, tiny wires or tiny cones on wires: which is best? In:
The Biomedical Engineering Handbook. The Electrical Engineering
Handbook Series, third ed., Vol. 1. CRS/Taylor and Francis, Boca
Raton.

Kennedy, P.R., Bakay, R.A.E., Moore, M.M., Adams, K., Goldwaithe,
J., 2000. Direct control of a computer from the human central nervous
system. IEEE Trans. Rehabil. Eng. 8 (2), 198–202.

Kennedy, P.R., Bakay, R.A.E., 1998. Restoration of neural output from a
paralyzed patient by direct brain connection. NeuroReport 9, 1707–
1711.

Kim, S., Simeral, J.D., Hochberg, L.R., Donoghue, J.P., Friehs, G.M.,
Black, M.J., 2007. Multi-state decoding of point-and-click control
signals from motor cortical activity in a human with tetraplegia. In:
Neural Engineering, 2007, CNE’07 3rd Internat. IEEE/EMBS Conf.,
pp. 486–489.

Levinson, S.E., 2005. Mathematical Models for Speech Technology. John
Wiley.

Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B., 2007. A
review of classification algorithms for EEG-based brain computer
interfaces. J. Neural Eng. 4, R1–R13.

Maeda, S., 1990. Compensatory articulation during speech: Evidence from
the analysis and synthesis of vocal-tract shapes using an articulatory
model. In: Hardcastle, W., Marchal, A. (Eds.), Speech Production and
Speech Modelling. Kluwer Academic Publisher, Amsterdam, pp. 131–
149.

Maier-Hein, L., Metze, F., Schultz, T., Waibel, A., 2005. Session
independent non-audible speech recognition using surface electromy-
ography. In: IEEE Workshop on Automatic Speech Recognition and
Understanding, San Juan, Puerto Rico, pp. 331–336.

Manabe, H., Hiraiwa, A., Sugimura, T., 2003. Unvoiced speech recogni-
tion using EMG-mime speech recognition. In: Proc. CHI, Human
Factors in Computing Systems, Ft. Lauderdale, Florida, pp. 794–795.

Manabe, H., Zhang, Z., 2004. Multi-stream HMM for EMG-based speech
recognition. In: Proc. 26th Annual International Conf. of the IEEE
Engineering in Medicine and Biology Society, 1–5 September 2004,
San Francisco, California, Vol. 2, pp. 4389–4392.

Marchal, A., Hardcastle, W.J., 1993. Instrumentation and database for
the cross-language study of coarticulation. Lang. Speech 36 (1), 3–20.
Please cite this article in press as: Denby, B. et al., Silent speech interfaces, S
Maynard, E.M., Nordhausen, C.T., Normann, R.A., 1997. The Utah
intracortical electrode array: a recording structure for potential brain–
computer interfaces. Electroencephalogr. Clin. Neurophysiol. 102 (3),
228–239.

Miller, L.E., Andreasen, D.S., Bartels, J.L., Kennedy, P.R., Robesco, J.,
Siebert, S.A., Wright, E.J., 2007. Human speech cortex long-term
recordings: Bayesian analyses. In: Neuroscience Meeting Planner 2007,
Program No. 517.20, San Diego, USA.

Moeller, 2008. <http://innovationdays.alcatel-lucent.com/2008/docu-
ments/Talking.Beyond.Hearing.pdf>.

Morse, M.S., O’Brien, E.M., 1986. Research summary of a scheme to
ascertain the availability of speech information in the myoelectric
signals of neck and head muscles using surface electrodes. Comput.
Biol. Med. 16 (6), 399–410.

Morse, M.S., Day, S.H., Trull, B., Morse, H., 1989. Use of myoelectric
signals to recognize speech. In: Images of the Twenty-First Century –
Proc. 11th Annual Internat. Conf. of the IEEE Engineering in
Medicine and Biology Society, Part 2, Vol. 11. Alliance for Engineer-
ing in Medicine and Biology, pp. 1793–1794.

Morse, M.S., Gopalan, Y.N., Wright, M., 1991. Speech recognition using
myoelectric signals with neural networks. In: Proc. 13th Annual
Internat. Conf. of the IEEE Engineering in Medicine and Biology
Society, Vol. 13, No 4, Piscataway, NJ, United States. IEEE, pp. 1877–
1878.

Munhall, K.G., Vatikiotis-Bateson, E., Tohkura, Y., 1995. X-ray film
database for speech research. J. Acoust. Soc. Amer. 98, 1222–1224.

Nakajima, Y., 2005. Development and evaluation of soft silicone NAM
microphone. Technical Report IEICE, SP2005-7, pp. 7–12 (in
Japanese).

Nakajima, Y., Kashioka, H., Shikano, K., Campbell, N., 2003a. Non-
audible murmur recognition. In: Proc. Eurospeech 2003, pp. 2601–
2604.

Nakajima, Y., Kashioka, H., Shikano, K., Campbell, N., 2003b. Non-
audible murmur recognition input interface using stethoscopic micro-
phone attached to the skin. In: Proc. IEEE ICASSP, pp. 708–711.

Nakajima, Y., Kashioka, H., Campbell, N., Shikano, K., 2006. Non-
audible murmur (NAM) recognition. IEICE Trans. Inform. Systems
E89-D (1), 1–8.

Nakamura, H., 1988. Method of recognizing speech using a lip image.
United States Patent 4769845, September 06.

NessAiver, M.S., Stone, M., Parthasarathy, V., Kahana, Y., Paritsky, A.,
2006. Recording high quality speech during tagged cine-MRI studies
using a fiber optic microphone. J. Magnet. Reson. Imag. 23, 92–97.
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